Petroleum Science
https://doi.org/10.1007/5s12182-020-00474-6

ORIGINAL PAPER q

Check for
updates

Lithofacies identification using support vector machine based on local
deep multi-kernel learning

Xing-Ye Liu - Lin Zhou? - Xiao-Hong Chen? - Jing-Ye Li3

Received: 1 November 2019
© The Author(s) 2020

Abstract

Lithofacies identification is a crucial work in reservoir characterization and modeling. The vast inter-well area can be sup-
plemented by facies identification of seismic data. However, the relationship between lithofacies and seismic information that
is affected by many factors is complicated. Machine learning has received extensive attention in recent years, among which
support vector machine (SVM) is a potential method for lithofacies classification. Lithofacies classification involves identifying
various types of lithofacies and is generally a nonlinear problem, which needs to be solved by means of the kernel function.
Multi-kernel learning SVM is one of the main tools for solving the nonlinear problem about multi-classification. However,
it is very difficult to determine the kernel function and the parameters, which is restricted by human factors. Besides, its
computational efficiency is low. A lithofacies classification method based on local deep multi-kernel learning support vector
machine (LDMKL-SVM) that can consider low-dimensional global features and high-dimensional local features is devel-
oped. The method can automatically learn parameters of kernel function and SVM to build a relationship between lithofacies
and seismic elastic information. The calculation speed will be expedited at no cost with respect to discriminant accuracy for
multi-class lithofacies identification. Both the model data test results and the field data application results certify advantages
of the method. This contribution offers an effective method for lithofacies recognition and reservoir prediction by using SVM.

Keywords Lithofacies discriminant - Support vector machine - Multi-kernel learning - Reservoir prediction - Machine
learning

1 Introduction

Lithofacies identification is a critical content in stratigraphic
correlation and sedimentary facies analysis. Lithofacies is an
indispensable component of sedimentary facies, which can

Edited by Jie Hao

< Lin Zhou
linzhou6308 @sina.com

Shaanxi Provincial Key Laboratory of Geological
Support for Coal Green Exploitation, College of Geology
and Environment, Xi’an University of Science

and Technology, Xi’an 710054, Shaanxi, China

Hunan Provincial Key Laboratory of Shale Gas Resource
Utilization, Hunan University of Science and Technology,
Xiangtan 411201, Hunan, China

State Key Laboratory of Petroleum Resources

and Prospecting, National Engineering Laboratory
for Offshore Oil Exploration, China University

of Petroleum-Beijing, Beijing 102249, China

Published online: 30 June 2020

represent different lithologies or same lithology containing
different types of fluids. Lithofacies prediction has a mag-
nificent guiding significance for reservoir prediction and sub-
sequent reservoir properties prediction. Accurate identifica-
tion of lithofacies is conducive to the process of exploration,
development and the stable production of resources (Xiong
et al. 2010; Li et al. 2012). Delving into the abundant infor-
mation about lithology and fluid contained in seismic data
is helpful to improve lateral resolution and accuracy in the
inter-well area. However, the relationship between lithofacies
and seismic information is extremely complex and difficult
to construct because multitudinous factors affect each other.
As a result, it brings great challenges on seismic lithofacies
identification (Liu et al. 2017; Huang et al. 2017a, b).
Traditional methods use rock physics and geostatistics to
achieve reservoir characterization and prediction (Jalalalhos-
seini et al. 2014, 2015; Liu et al. 2018). Nowadays, machine
learning has attracted wide attention in geoscience because of
its advantages in addressing big data issues (e.g., Huang et al.
2016; Chen 2017, 2018; Chen et al. 2019). Neural network
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is one of the most used machine learning algorithms in geo-
physics (Kobrunov and Priezzhev 2016). However, it depends
on the network topology, initial weights and thresholds and
is sensitive to learning rate. Improper parameters will result
in a slow convergence, falling to a local minimum, and sub-
sequently outputting unsatisfactory predictions (Caruana and
Niculescu-Mizil 2006). Support vector machine (SVM) is an
effective machine learning method that aims at maximizing
the distance from support vector to separating hyperplanes
(Li et al. 2004; Zhang et al. 2005, 2018; Liu et al. 2020). It
shows a powerful performance during the dispose of small-
samples, nonlinearity and high-dimensional problems. SVM
is guided by the maximum margin decision boundary and does
not require the data to follow a specific distribution (Li et al.
2004; Vapnik 1999; Mou et al. 2015). Besides, it has rela-
tively simple mathematical form with strong generalization
ability (Suykens and Vandewalle 1999). The SVM method
can be introduced to lithofacies identification (Abedi et al.
2012; Wang et al. 2016). Using SVM to identified lithofacies
includes two steps. The first is training by employing training
attributes (input) and known lithofacies (output) and obtaining
the relationship between attributes and lithofacies. The sec-
ond step is predicting lithofacies by inputting the attributes in
target areas into decision function. Li et al. (2004) used SVM
to recognize and predict reservoirs from seismic data, dem-
onstrating the feasibility of SVM. Torres and Reveron (2013)
integrated rock physics and simultaneous seismic inversion and
successfully identified the reservoir zones by utilizing SVM in
Orinoco Oil Belt, Venezuela. Zhao et al. (2015) compared the
artificial neural network with SVM for lithofacies recognition
and proved that SVM was mathematically more robust and
easier to train. Besides, Zhao et al. (2014) introduced the proxi-
mal support vector machines (PSVM, see Fung and Mangasar-
ian 2001, 2005; Mangasarian and Wild 2005) into lithofacies
classification in Barnett Shale for saving computational cost,
demonstrating the validity of PSVM classifier in binary clas-
sification between shale and limestone.

However, SVM is originally used to solve binary classi-
fication problems. Lithofacies identification is a multi-clas-
sification, high-dimensional and nonlinear problem. When
solving the problem of nonlinear classification or prediction,
using kernel functions maps the original data into a higher-
dimensional feature space (Qu et al. 2019). Then, according
to the training data, a classification hyperplane is established
as a decision surface to separate the data belonging to differ-
ent categories in the high-dimensional space (Zhu et al. 2015).
Unfortunately, it is inadequate to distinguish the characteristics
of different lithofacies only by using a single kernel under this
situation. Otherwise, the identified accuracy will be impacted.
The multi-kernel learning (MKL) is an available alternative
with more flexibility than single-kernel function (Crammer
and Singer 2001). Introducing the MKL method can improve
the accuracy and stability of lithofacies discrimination based
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on SVM (Li et al. 2014). Through multi-kernel mapping, the
high-dimensional space is divided into a combined space com-
posed of several feature spaces. Then, each of the characteris-
tic components can be embedded in the corresponding kernel
function. MKL-SVM is less explored in lithofacies identifica-
tion and reservoir prediction applications. Qin (2017) analyzed
the methods and principles of commonly used techniques for
lithofacies identification. Based on logging data, it was proved
that MKL-SVM could enhance the accuracy of lithofacies
classification. Cheng et al. (2018) successfully accomplished
the lithofacies classification by the MKL-SVM method, but the
calculation was time-consuming and the operation was cum-
bersome. The MKL algorithm is confronted with the dilemmas
in selecting the appropriate of kernel function, determining
the combination way of kernel functions and calculating the
coefficients of each kernel function. In general, substantial ker-
nel matrices jointly participate in the computation. This is the
main reason why the computational dimension is large, and the
spatial complexity and memory occupancy are high. Then, the
computational time increases dramatically (Lin et al. 2007; Li
etal. 2016). As a result, application of lithofacies identification
based on MKL-SVM is severely limited in practice. GONen
and Alpaydin (2008) proposed a local multi-kernel learning
(LMKL) SVM method that selected the appropriate kernel
function locally to reduce the computational complexity.
Although it effectively improves the sparsity of the kernels and
reduces spatial complexity, it weakens the “complementarity”
between the kernels and has serious parameter redundancy
(GoNen and Alpaydin 2013). It also ignores the global char-
acteristics of data. Generally, selecting proper kernel functions
and determining their weights are difficult and depend heav-
ily on experience. In addition, the computational efficiency of
LMKL-SVM is inadequate (Ding 2014).

Jose et al. (2013) generalized LMKL to learn a tree-based
primal feature that was high-dimensional and sparse and put
forward a local deep multi-kernel learning (LDMKL) SVM
method (Bengio et al. 2010). It could take both global and local
features of data into account and facilitated the efficiency of
multi-kernel learning while ensuring accuracy. This method
focused on learning the best decision boundary in a sparse,
high-dimensional representation, which could jointly learn both
kernel and SVM parameters. Nevertheless, only a single-kernel
function was used for global features and it was mainly aimed
at the problem of binary classification. Following this research,
we introduced LDKML-SVM into lithofacies classification and
improved it for multi-class. Several low- and high-dimensional
kernel functions are combined to distinguish the attributes of
different lithofacies more accurately, so as to effectively build
the relationship between lithofacies and training attributes.
Using the local deep kernel function with tree structure can pro-
mote the computational efficiency. Taking the global features
into account maintains the recognition accuracy. Automatic
learning of kernel function parameters and decision parameters
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avoids the deviation caused by artificial selection of parameters.
The goals are to supply a promising new method for lithofa-
cies identification and reservoir prediction, to overcome the
weaknesses of the existing SVM-based lithofacies identification
method and to promote the practicability of lithofacies classifi-
cation based on SVM. Model data test and field data application
verify validity of the proposed method.

2 Methodology

Compared with the LMKL-SVM, LDMKL-SVM is an
improved method that can take into account the global and
local characteristics of data at the same time. It concentrates
on learning the best decision boundary in a sparse and high-
dimensional representation. We introduced this method
to lithofacies classification and extended it for multi-class
facies. Multiple global kernel functions that are used to learn
global features are set to be low-dimensional. The local ker-
nel functions are composed of mapping functions that are
tree-structured, high-dimensional and sparse. For that rea-
son, the LDMKL-SVM method is conducive to improving
the efficiency and accuracy when classifying lithofacies. The
number of global and local kernel functions can be adjusted
according to the sophistication of the problem. Another advan-
tage of LDMKL-SVM is that it can learn parameters of kernel
function and decision parameters of SVM at the same time.
By learning the training data, we can establish relationship
between training attributes and lithofacies using LDMKL
algorithm. Inputting the measured data into the decision func-
tion of SVM realizes lithofacies recognition in other wells or
in inter-well area. In the present method, the decision function
of SVM can be expressed as (Jose et al. 2013):

y(x) = sign(Z oK (x, xi)>
= sign<2 a,y,qSG

ijk

¢G (X)d)Lk ( i) d’Lk (X)> )

ign(w' (D5(x) @ D, (x)))
n(d) X)W (x))
ign(W (x)@(x))

where K (x, xi) = Z/ « KK« represents multi-kernel learn-
ing function, x; represents the data, subscript j=1,...,J
denotes the jth global kernel function K; = @; ® @
and K; = @; ® @, are the global and local kernel func-
tions, respectively. K; consists of sparse and tree-struc-
tured mapping functions @; that contains high-dimen-
sional local features. @, represents global mapping
relations that contains low-dimensional global features.
W= aydp, (x;)®g(x;), k=1,....M denotes the kth

dimension of @, , y; represents the type of lithofacies, a; is
coefficient, W = [w, ..., W, ..., Wy Jand W(x) = W@, (x).

In order to ensure computational efficiency, global fea-
tures are usually low-dimensional. In this case, global map-
ping kernels can be set in linear and quadratic. To make
prediction efficient, @; is tree-structured. Each dimension
of @; corresponds to a node in the tree, and the dimension
of @, (x) is nonzero only in the case that the corresponding
node lies on the path traversed from the root to one of the
leaves. Otherwise, it is equal to 0. Thus, for any locations,
@, (x) has only log M nonzero dimensions, accelerating the
computation (Jose et al. 2013). Figure 1 displays a four-layer
tree structure schematic diagram. Only those dimensions of
@, (x) are nonzero which correspond to the path traversed by
x from the root to a leaf (as the black node shown in Fig. 1),
which reduces the number of features to be calculated.

For the kth-dimensional local feature, its state value can
be controlled by the indicator variable ,(x) (Jose et al. 2013),

I(x) = %

a€cancestors(k)

(tanh (5,67x) + (=1)@) @)

where s; represents a contraction factor. Jose et al. (2013)
introduced a scale parameter 95 to make tree learning ame-
nable to sub-gradient descent and keep the sparsity. C(a) is
0 if a node is its parent’s left child and 1 if it is its parent’s
right child. The high nonlinear features are mainly embod-
ied in the @, . Jose et al. (2013) had tested the performance
of local deep mapping functions with different forms and
drew a conclusion that using the hyperbolic tangent func-
tion with a scale parameter 91,<T could output an excellent
result. Following the conclusion, we utilized the hyperbolic
tangent function to construct the local kernel function. The
k™-dimensional local feature mapping function is as follows:

¢;, = tanh (c6,"x)[(x) 3)

where o is a contraction factor and BI’CT is a scale parameter.
6=10,,...,0,] and O =[0, ... ,91’”] denote the learn-
ing parameters that can be gained by solving the following
objective function (Jose et al. 2013):

Fig. 1 Sketch Map of a four-dimensional local feature with tree-struc-
tured
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where Ay, , 44 , Ay represent the coefficients, and L denotes
the loss function. The loss function is broadly used to esti-
mate the degree of inconsistency between the predicted
value y(x) and the real value y at x. In order to extend the
binary SVM to multi-class classification, the common prac-
tice is using one-vs-all or one-vs-one strategy (Duan and
Keerthi 2005). In contrast, we introduced the multi-class loss
function to solve the multi-class problem. There are several
variations in multi-class loss functions. We use the loss func-
tion proposed by Crammer and Singer (2001):

L = max|0, 1 + max @Z(xi)WT X

_ i
Vi (y,»)

- QDZ (xi)W(Tyi)xi

&)

where max [ @7 (x;)W

Vi (91')
of the real facies y; misclassified into other lithofacies. The
minimum of objective function (Eq. 4) can be found by the
primal stochastic sub-gradient descent method, neglect of
keeping dual variables or dual sparsity (see Jose et al. 2013;
Orabona et al. 2010). Equation 4 contains terms about learn-
ing parameters of kernel functions and decision parameters
of SVM. As a result, the method can jointly learn both ker-
nel learning and SVM decision parameters. For the tth itera-
tion of training point X;, the corresponding iteration update
formula is:

X, | represents the estimated score

WD = WO - 6,y P(WO, 00, 00 x,) (6)
O = @ — Y P(WD, 00,6/ x,) @)
@I(t+1) =0 _ ﬂ,V@/P(W(’), @(t)’ @/(t), X,-) ®)

where g, denotes iteration step,

Vka(xi) = AW + V, | max @Z(xi)WEA >xl~ - ¢, (x;)x;
Vi

;i#)’i
)
7 max]
Vo, P(x) = Aty — Z tanh (6.7 x;) V1, (x;) w<jj#" X; — wgv )X
(10)
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Solving the objective function iteratively, we can
acquire parameters of local deep multi-kernel learning
and SVM decision parameters. For the seismic lithofacies
classification problem with large amount of data, it can also
obtain discriminant lithofacies with appropriate accuracy
while ensuring the computational efficiency.

X; X,

Vg P(x;) = 40} — o[1 — tanh® (66" x;) |1 (x;)| W = Wi [}

3 Test on model data

First, we tested the present method on a modified fluvial
channel system from the Stanford V reservoir model (Mao
and Journel 1999), which had 120 CDPs and 100 CDPs
in the horizontal direction of X and Y, with interval of 25
meters. The curved channel model includes channel, point
bar, natural dike and flood plain subfacies. The lithofa-
cies developed in different sedimentary facies are discrep-
ant. The floodplain, channel, natural dike and point bar
are sandstone, mudstone, sandy mudstone and siltstone
deposit, respectively. Extract some traces from the original
model as training data. Test is done on the whole model,
and here, we show a slice of it to contrast clearly. Figure 2
shows lithofacies of one slice in the model and locations
of the training data. Training attributes include density and
P-wave velocity (displayed in Fig. 3). Figure 3c, d shows
the probability density distribution of elastic attributes in
different facies. It should be mentioned that the elastic

Fig.2 One slice of the test model, which develops channels, natural
dike, point bar and floodplain. Different colors represent different
facies. 0, 1, 2 and 3 represent mudstone, sandstone, sandy mudstone
and siltstone, respectively. White circles represent training data loca-
tions
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Fig. 3 Elastic attributes of the test model (a, b) and their probability density distribution (¢, d). (a, c) P-wave velocity; (b, d) density. 0,1,2,3 rep-
resent mudstone, sandstone, sandy mudstone and siltstone, respectively. The difference of elastic properties between mudstone and sandstone is
remarkable and easy to distinguish, while attribute values of sandy mudstone and siltstone overlap with those of mudstone and sandstone, which

brings about challenges to discriminate them

attributes features of siltstone and sandy mudstone are
distributed between that of mudstone and sandstone, and
their attribute values overlap with sandstone or mudstone
in a large range. The relationship between lithofacies and
elastic attributes is established by the present method and
LMKL-SVM method, respectively. Figure 4a exhibits the
discriminated lithofacies using LDMKL-SVM. It can be
noted that this method can better identify channel sand-
stone and floodplain mudstone, while the siltstone and
sandy mudstone cannot be fully recognized. Figure 4b
shows the discriminated lithofacies by LMKL-SVM. Some

locations whose lithofacies are sandstone in model are
identified as sandy mudstone. In addition, the lithofacies
that should be siltstone and sandy mudstones at some loca-
tions are not consistent with the model facies. Although
both the two methods closely follow the defined facies
and show the promising results, the proposed method pro-
duces a more accurate result, which suggests that its ability
to classify these facies is stronger than the conventional
method. In order to compare and evaluate the performance
of the two methods more intuitively and quantitatively, we
count the confusion matrices of the two methods (shown

@ Springer
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(a)

Facies

(b) 1

Facies

Fig.4 Classified results of the test model by different methods: a identified lithofacies by LDMKL-SVM; b identified lithofacies by LMKL-
SVM. By contrast, the former is superior to the latter. Mudstone and sandstone are well recognized. But the classification effect of the other two

lithofacies is unsatisfactory

Table 1 Confusion matrix of the test model with the LDMKL-SVM method

Defined mudstone, %

Defined sandstone, %

Defined
siltstone, %

Defined sandy mudstone, %

Predicted mudstone 99.97 0.00 0.00 0.03
Predicted sandstone 0.00 99.91 0.09 0.00
Predicted sandy mudstone 0.00 74.46 25.54 0.00
Predicted siltstone 54.36 0.00 0.00 45.64
Table 2 Confusion matrix of the test model with the LMKL-SVM method

Defined mudstone, % Defined sandstone, % Defined sandy mudstone, % Defined

siltstone, %

Predicted mudstone 99.97
Predicted sandstone 0.00
Predicted sandy mudstone 0.00
Predicted siltstone 60.05

0.00 0.00 0.03
96.40 3.60 0.00
74.15 25.85 0.00

0.00 0.00 39.95

in Tables 1 and 2). It is found that the accuracy of the
LMKL-SVM is slightly lower than that of the proposed
method (about 2.03%). Obviously, the recognition accu-
racy of the proposed method for different lithofacies is
also higher than that of LMKL-SVM. For the whole test
model, the execution time of LMKL-SVM is 1674.81 s
and is longer than that of the proposed method (354.99 s).
This demonstrates the effectiveness and superiority of the
lithofacies identification method based on LDMKL-SVM.

@ Springer

4 Application on field data

In order to further verify the validity of lithofacies discri-
minant method based on LDMKL-SVM, we applied this
novel method to actual land logging and 2D seismic data.
The filed data are from a China work area. Figure 5 dis-
plays the test seismic section that goes through two wells
(Well A and B). According to the preliminary study and log
interpretation results, the main lithofacies in the study area
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Time, s

CDP

Fig.5 2D seismic stack profile. Black lines denote locations of the
two wells. Black arrows indicate target reservoirs

includes mudstone, water-bearing sandstone and oil-bearing
sandstone. Black lines denote locations of the two wells, and

the distance between the two wells is 975 m. Black arrows
in Fig. 5 indicate the target reservoirs.

4.1 Lithofacies discriminant in wells

Experiments are carried out in wells at first. We borrow
density and P- and S-wave velocity as training attributes.
Figures 6 and 7 exhibit logging curves of Wells A and B.
Figure 8 displays the distribution of elastic attributes in the
two wells. All logging data of Well A are used as training
data to identify lithofacies of Well A and Well B by the
present method and LMKL-SVM, respectively. Figures 9
and 10 show interpretation lithofacies and identified results
of Well A and Well B, respectively. The result produced by
the present method has an excellent consistency with the
interpretation lithofacies and can accurately pick out the
oil-bearing sandstone. The performance of the proposed
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Fig.6 Logging curves of Well A: a porosity; b shale content; ¢ water saturation; d P-wave velocity; e S-wave velocity; and f density

@ Springer



Petroleum Science

(a) (b) (c)

3.3

3.4

Depth, km

WWW W

3.5

3.6

=

e

0 0.075 0.150 0.1 0.5 0.9 0 0.5

¢ Vsh Sw

1.0 3 4 5 1.6

(d) (e) ()
2.'3

3.0 24 25 26

V,, km/s V., km/s p, glcm?

Fig.7 Logging curves of the Well B: a porosity; b shale content; ¢ water saturation; d P-wave velocity; e S-wave velocity; and f density

method is better than that of the traditional method. Statis-
tical analysis of the confusion matrix exhibited in Table 3
and Table 4 indicates that the misjudgment rate of the pro-
posed method is only 4.87% (Well A) and 6.69% (Well B),
while that of the traditional method is 7.89% and 14.68%,
correspondingly. The accuracy of each type lithofacies is
higher than that of LMKL-SVM. That is, the accuracy is
improved by jointly considering the global low- and local
high-dimensional features, indicating the dependability of
the method quantitatively.

@ Springer

4.2 Seismic facies classification

Ultimately, we applied this novel method to the 2D seis-
mic profile. The characteristics of the geological structure
vary with different measurement methods at different scales.
Because the observation scales of logging data and seismic
data are different, logging data are first coarsened to seismic
scale by Backus averaging. The elastic attributes of the area
to be predicted are obtained by the prestack seismic inver-
sion method, as shown in Fig. 11. With coarsened well data
(well A and well B) as training data, classified lithofacies by
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Fig. 8 Probability density distribution of elastic attributes in Wells A and B. a, d P-wave velocity; b, e S-wave velocity; c, f density. The above
figures are about Well A, and the below figures are about Well B. 0, 1, 2 represent mudstone, water sandstone and oil sandstone, respectively

different methods is displayed in Fig. 12. It can be noted that
both the two methods can effectively identify sandstone and
mudstone in the inter-well area and distinguish oil-bearing
sandstone from water-bearing sandstone. In this application,
we cannot compare the accuracy of the two methods because
the true seismic facies is unknown. However, LDMKL-SVM
can speed up prediction time over LMKL-SVM. Their run-
ning time is 107.5 s and 418.2 s, respectively. Predicted
lithofacies of the traces near wells are almost in agreement
with the coarsened well facies. The identified target reser-
voirs follow the actual situation, which also suggests the
good performance and practical value of the new method. It
can provide reliable information for reservoir prediction and
subsequent research. In addition, this method can be applied
to any case where lithology and fluid need to be recognized.

5 Conclusion

We describe a new lithofacies identification method
based on SVM. The present method draws support from
a composite nonlinear kernel consisted of high-dimen-
sional, sparse and computationally deep local features
and low-dimensional global features. This method can be
used to classify multiple types of lithofacies. One advan-
tage is that it can automatically learn the parameters of
kernel functions and SVM at the same time, avoiding
the weakness of the traditional lithofacies discriminant
method based on SVM. Another potential advantage is
that the new method can effectively improve the classi-
fication accuracy. At the same time, the computing cost
is saved because the local high-dimensional features are
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Fig. 9 Defined lithofacies a and identified facies by different methods
of the test Well A: b classified by the proposed method; ¢ classified
by the traditional method. 0, 1, 2 represent mudstone, water sandstone
and oil sandstone, respectively. Because of the higher complexity of
the field data than model data, learning of global and high-dimen-
sional local features can better distinguish the attributes of different
lithofacies and the accuracy is promoted

sparse and tree-structured. The numerical example and
filed data application illustrate that the proposed method
can generate a preferable identified result in a relatively
short time. The comparison with traditional methods also
calibrates the superiority of the lithofacies discriminant
method based on LDMKL-SVM. Profiting from the high
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Fig. 10 Defined lithofacies a and identified facies by different meth-
ods of the test Well B. b classified by the proposed method; and ¢
classified by the traditional method. 0, 1, 2 represent mudstone, water
sandstone and oil sandstone, respectively. Comparing diagrams b
with ¢, it can be found that the new method improves the accuracy
and has a better consistency with the definition of lithofacies

accuracy and computation efficiency, a valuable approach
is provided for the practical application of seismic lithofa-
cies identification. It is also of great significance to the
exploration and development of reservoirs and has good
application prospects.
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Table 3 Confusion matrix of Well A with different methods

Method Defined mudstone Defined water stone, Defined
% oil stone,
%

Predicted lithofacies by LDMKL-SVM Mudstone 97.39% 2.51 0.10
Water stone 6.38% 92.20 1.42
Qil stone 0.00% 4.20 95.8

Predicted lithofacies by traditional LMKL-SVM Mudstone 90.12 5.98 3.90
Water stone 0.00% 9291 5.67
Oil stone 0.00% 6.72 93.28

Table 4 Confusion matrix of Well B with different methods

Method Defined mudstone, % Defined water stone, % Defined
oil stone,
%
Predicted lithofacies by LDMKL-SVM Mudstone 91.90 7.16 0.94
Water stone 1.58 98.15 0.27
Oil stone 0.00 10.13 89.87
Predicted lithofacies by traditional LMKL-SVM Mudstone 81.64 9.27 9.09
Water stone 0.00 90.77 9.23
Oil stone 0.00 16.46 83.54

1 40 80 120 1 40 80 120

CDP

Fig. 11 Profiles of seismic elastic attributes obtained by prestack seismic inversion technique. a P-wave velocity; b S-wave velocity; and ¢ den-
sity. The inverted attributes reflect the shapes and characteristics of strata in the study area. A good inversion result of the elastic attribute is
helpful to identify the corresponding lithofacies

@ Springer
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Well A

Well B

Facies
2

CDP

(t)) 26 Well A Well B .
Facies
2
7]
) 1
E
= 0

CDP

Fig. 12 Classified lithofacies of the field data using different methods. a LDMKL-SVM; b traditional LMKL-SVM. 0, 1, 2 represent mudstone,
water sandstone and oil sandstone, respectively. Different lithofacies are well distinguished, and their shapes are similar to of the strata. Target

reservoirs are also well identified
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