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Abstract
Lithofacies identification is a crucial work in reservoir characterization and modeling. The vast inter-well area can be sup-
plemented by facies identification of seismic data. However, the relationship between lithofacies and seismic information that 
is affected by many factors is complicated. Machine learning has received extensive attention in recent years, among which 
support vector machine (SVM) is a potential method for lithofacies classification. Lithofacies classification involves identifying 
various types of lithofacies and is generally a nonlinear problem, which needs to be solved by means of the kernel function. 
Multi-kernel learning SVM is one of the main tools for solving the nonlinear problem about multi-classification. However, 
it is very difficult to determine the kernel function and the parameters, which is restricted by human factors. Besides, its 
computational efficiency is low. A lithofacies classification method based on local deep multi-kernel learning support vector 
machine (LDMKL-SVM) that can consider low-dimensional global features and high-dimensional local features is devel-
oped. The method can automatically learn parameters of kernel function and SVM to build a relationship between lithofacies 
and seismic elastic information. The calculation speed will be expedited at no cost with respect to discriminant accuracy for 
multi-class lithofacies identification. Both the model data test results and the field data application results certify advantages 
of the method. This contribution offers an effective method for lithofacies recognition and reservoir prediction by using SVM.

Keywords  Lithofacies discriminant · Support vector machine · Multi-kernel learning · Reservoir prediction · Machine 
learning

1  Introduction

Lithofacies identification is a critical content in stratigraphic 
correlation and sedimentary facies analysis. Lithofacies is an 
indispensable component of sedimentary facies, which can 

represent different lithologies or same lithology containing 
different types of fluids. Lithofacies prediction has a mag-
nificent guiding significance for reservoir prediction and sub-
sequent reservoir properties prediction. Accurate identifica-
tion of lithofacies is conducive to the process of exploration, 
development and the stable production of resources (Xiong 
et al. 2010; Li et al. 2012). Delving into the abundant infor-
mation about lithology and fluid contained in seismic data 
is helpful to improve lateral resolution and accuracy in the 
inter-well area. However, the relationship between lithofacies 
and seismic information is extremely complex and difficult 
to construct because multitudinous factors affect each other. 
As a result, it brings great challenges on seismic lithofacies 
identification (Liu et al. 2017; Huang et al. 2017a, b).

Traditional methods use rock physics and geostatistics to 
achieve reservoir characterization and prediction (Jalalalhos-
seini et al. 2014, 2015; Liu et al. 2018). Nowadays, machine 
learning has attracted wide attention in geoscience because of 
its advantages in addressing big data issues (e.g., Huang et al. 
2016; Chen 2017, 2018; Chen et al. 2019). Neural network 
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is one of the most used machine learning algorithms in geo-
physics (Kobrunov and Priezzhev 2016). However, it depends 
on the network topology, initial weights and thresholds and 
is sensitive to learning rate. Improper parameters will result 
in a slow convergence, falling to a local minimum, and sub-
sequently outputting unsatisfactory predictions (Caruana and 
Niculescu-Mizil 2006). Support vector machine (SVM) is an 
effective machine learning method that aims at maximizing 
the distance from support vector to separating hyperplanes 
(Li et al. 2004; Zhang et al. 2005, 2018; Liu et al. 2020). It 
shows a powerful performance during the dispose of small-
samples, nonlinearity and high-dimensional problems. SVM 
is guided by the maximum margin decision boundary and does 
not require the data to follow a specific distribution (Li et al. 
2004; Vapnik 1999; Mou et al. 2015). Besides, it has rela-
tively simple mathematical form with strong generalization 
ability (Suykens and Vandewalle 1999). The SVM method 
can be introduced to lithofacies identification (Abedi et al. 
2012; Wang et al. 2016). Using SVM to identified lithofacies 
includes two steps. The first is training by employing training 
attributes (input) and known lithofacies (output) and obtaining 
the relationship between attributes and lithofacies. The sec-
ond step is predicting lithofacies by inputting the attributes in 
target areas into decision function. Li et al. (2004) used SVM 
to recognize and predict reservoirs from seismic data, dem-
onstrating the feasibility of SVM. Torres and Reveron (2013) 
integrated rock physics and simultaneous seismic inversion and 
successfully identified the reservoir zones by utilizing SVM in 
Orinoco Oil Belt, Venezuela. Zhao et al. (2015) compared the 
artificial neural network with SVM for lithofacies recognition 
and proved that SVM was mathematically more robust and 
easier to train. Besides, Zhao et al. (2014) introduced the proxi-
mal support vector machines (PSVM, see Fung and Mangasar-
ian 2001, 2005; Mangasarian and Wild 2005) into lithofacies 
classification in Barnett Shale for saving computational cost, 
demonstrating the validity of PSVM classifier in binary clas-
sification between shale and limestone.

However, SVM is originally used to solve binary classi-
fication problems. Lithofacies identification is a multi-clas-
sification, high-dimensional and nonlinear problem. When 
solving the problem of nonlinear classification or prediction, 
using kernel functions maps the original data into a higher-
dimensional feature space (Qu et al. 2019). Then, according 
to the training data, a classification hyperplane is established 
as a decision surface to separate the data belonging to differ-
ent categories in the high-dimensional space (Zhu et al. 2015). 
Unfortunately, it is inadequate to distinguish the characteristics 
of different lithofacies only by using a single kernel under this 
situation. Otherwise, the identified accuracy will be impacted. 
The multi-kernel learning (MKL) is an available alternative 
with more flexibility than single-kernel function (Crammer 
and Singer 2001). Introducing the MKL method can improve 
the accuracy and stability of lithofacies discrimination based 

on SVM (Li et al. 2014). Through multi-kernel mapping, the 
high-dimensional space is divided into a combined space com-
posed of several feature spaces. Then, each of the characteris-
tic components can be embedded in the corresponding kernel 
function. MKL-SVM is less explored in lithofacies identifica-
tion and reservoir prediction applications. Qin (2017) analyzed 
the methods and principles of commonly used techniques for 
lithofacies identification. Based on logging data, it was proved 
that MKL-SVM could enhance the accuracy of lithofacies 
classification. Cheng et al. (2018) successfully accomplished 
the lithofacies classification by the MKL-SVM method, but the 
calculation was time-consuming and the operation was cum-
bersome. The MKL algorithm is confronted with the dilemmas 
in selecting the appropriate of kernel function, determining 
the combination way of kernel functions and calculating the 
coefficients of each kernel function. In general, substantial ker-
nel matrices jointly participate in the computation. This is the 
main reason why the computational dimension is large, and the 
spatial complexity and memory occupancy are high. Then, the 
computational time increases dramatically (Lin et al. 2007; Li 
et al. 2016). As a result, application of lithofacies identification 
based on MKL-SVM is severely limited in practice. GöNen 
and Alpaydin (2008) proposed a local multi-kernel learning 
(LMKL) SVM method that selected the appropriate kernel 
function locally to reduce the computational complexity. 
Although it effectively improves the sparsity of the kernels and 
reduces spatial complexity, it weakens the “complementarity” 
between the kernels and has serious parameter redundancy 
(GöNen and Alpaydın 2013). It also ignores the global char-
acteristics of data. Generally, selecting proper kernel functions 
and determining their weights are difficult and depend heav-
ily on experience. In addition, the computational efficiency of 
LMKL-SVM is inadequate (Ding 2014).

Jose et al. (2013) generalized LMKL to learn a tree-based 
primal feature that was high-dimensional and sparse and put 
forward a local deep multi-kernel learning (LDMKL) SVM 
method (Bengio et al. 2010). It could take both global and local 
features of data into account and facilitated the efficiency of 
multi-kernel learning while ensuring accuracy. This method 
focused on learning the best decision boundary in a sparse, 
high-dimensional representation, which could jointly learn both 
kernel and SVM parameters. Nevertheless, only a single-kernel 
function was used for global features and it was mainly aimed 
at the problem of binary classification. Following this research, 
we introduced LDKML-SVM into lithofacies classification and 
improved it for multi-class. Several low- and high-dimensional 
kernel functions are combined to distinguish the attributes of 
different lithofacies more accurately, so as to effectively build 
the relationship between lithofacies and training attributes. 
Using the local deep kernel function with tree structure can pro-
mote the computational efficiency. Taking the global features 
into account maintains the recognition accuracy. Automatic 
learning of kernel function parameters and decision parameters 
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avoids the deviation caused by artificial selection of parameters. 
The goals are to supply a promising new method for lithofa-
cies identification and reservoir prediction, to overcome the 
weaknesses of the existing SVM-based lithofacies identification 
method and to promote the practicability of lithofacies classifi-
cation based on SVM. Model data test and field data application 
verify validity of the proposed method.

2 � Methodology

Compared with the LMKL-SVM, LDMKL-SVM is an 
improved method that can take into account the global and 
local characteristics of data at the same time. It concentrates 
on learning the best decision boundary in a sparse and high-
dimensional representation. We introduced this method 
to lithofacies classification and extended it for multi-class 
facies. Multiple global kernel functions that are used to learn 
global features are set to be low-dimensional. The local ker-
nel functions are composed of mapping functions that are 
tree-structured, high-dimensional and sparse. For that rea-
son, the LDMKL-SVM method is conducive to improving 
the efficiency and accuracy when classifying lithofacies. The 
number of global and local kernel functions can be adjusted 
according to the sophistication of the problem. Another advan-
tage of LDMKL-SVM is that it can learn parameters of kernel 
function and decision parameters of SVM at the same time. 
By learning the training data, we can establish relationship 
between training attributes and lithofacies using LDMKL 
algorithm. Inputting the measured data into the decision func-
tion of SVM realizes lithofacies recognition in other wells or 
in inter-well area. In the present method, the decision function 
of SVM can be expressed as (Jose et al. 2013):

 where K
�
�, �i
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dimension of �L , yi represents the type of lithofacies, �i is 
coefficient, � = [�1,… ,�k,… ,�M] and �(�) = ��L(�).

In order to ensure computational efficiency, global fea-
tures are usually low-dimensional. In this case, global map-
ping kernels can be set in linear and quadratic. To make 
prediction efficient, �L is tree-structured. Each dimension 
of �L corresponds to a node in the tree, and the dimension 
of �L(�) is nonzero only in the case that the corresponding 
node lies on the path traversed from the root to one of the 
leaves. Otherwise, it is equal to 0. Thus, for any locations, 
�L(�) has only log M nonzero dimensions, accelerating the 
computation (Jose et al. 2013). Figure 1 displays a four-layer 
tree structure schematic diagram. Only those dimensions of 
�L(�) are nonzero which correspond to the path traversed by 
� from the root to a leaf (as the black node shown in Fig. 1), 
which reduces the number of features to be calculated.

For the kth-dimensional local feature, its state value can 
be controlled by the indicator variable Ik(�) (Jose et al. 2013),

 where sI represents a contraction factor. Jose et al. (2013) 
introduced a scale parameter �T

a
 to make tree learning ame-

nable to sub-gradient descent and keep the sparsity. C(a) is 
0 if a node is its parent’s left child and 1 if it is its parent’s 
right child. The high nonlinear features are mainly embod-
ied in the �L . Jose et al. (2013) had tested the performance 
of local deep mapping functions with different forms and 
drew a conclusion that using the hyperbolic tangent func-
tion with a scale parameter �′T

k
 could output an excellent 

result. Following the conclusion, we utilized the hyperbolic 
tangent function to construct the local kernel function. The 
kth-dimensional local feature mapping function is as follows:

where � is a contraction factor and �′T
k

 is a scale parameter. 
� = [�1,… , �M] and �� = [��

1
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ing parameters that can be gained by solving the following 
objective function (Jose et al. 2013):
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Fig. 1   Sketch Map of a four-dimensional local feature with tree-struc-
tured
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where �W , �� , ��′ represent the coefficients, and L denotes 
the loss function. The loss function is broadly used to esti-
mate the degree of inconsistency between the predicted 
value y(�) and the real value y at � . In order to extend the 
binary SVM to multi-class classification, the common prac-
tice is using one-vs-all or one-vs-one strategy (Duan and 
Keerthi 2005). In contrast, we introduced the multi-class loss 
function to solve the multi-class problem. There are several 
variations in multi-class loss functions. We use the loss func-
tion proposed by Crammer and Singer (2001):

where max
⌢
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of the real facies yi misclassified into other lithofacies. The 
minimum of objective function (Eq. 4) can be found by the 
primal stochastic sub-gradient descent method, neglect of 
keeping dual variables or dual sparsity (see Jose et al. 2013; 
Orabona et al. 2010). Equation 4 contains terms about learn-
ing parameters of kernel functions and decision parameters 
of SVM. As a result, the method can jointly learn both ker-
nel learning and SVM decision parameters. For the tth itera-
tion of training point �i , the corresponding iteration update 
formula is:

where �t denotes iteration step,
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Solving the objective function iteratively, we can 
acquire parameters of local deep multi-kernel learning 
and SVM decision parameters. For the seismic lithofacies 
classification problem with large amount of data, it can also 
obtain discriminant lithofacies with appropriate accuracy 
while ensuring the computational efficiency.

3 � Test on model data

First, we tested the present method on a modified fluvial 
channel system from the Stanford V reservoir model (Mao 
and Journel 1999), which had 120 CDPs and 100 CDPs 
in the horizontal direction of X and Y, with interval of 25 
meters. The curved channel model includes channel, point 
bar, natural dike and flood plain subfacies. The lithofa-
cies developed in different sedimentary facies are discrep-
ant. The floodplain, channel, natural dike and point bar 
are sandstone, mudstone, sandy mudstone and siltstone 
deposit, respectively. Extract some traces from the original 
model as training data. Test is done on the whole model, 
and here, we show a slice of it to contrast clearly. Figure 2 
shows lithofacies of one slice in the model and locations 
of the training data. Training attributes include density and 
P-wave velocity (displayed in Fig. 3). Figure 3c, d shows 
the probability density distribution of elastic attributes in 
different facies. It should be mentioned that the elastic 
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Fig. 2   One slice of the test model, which develops channels, natural 
dike, point bar and floodplain. Different colors represent different 
facies. 0, 1, 2 and 3 represent mudstone, sandstone, sandy mudstone 
and siltstone, respectively. White circles represent training data loca-
tions
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attributes features of siltstone and sandy mudstone are 
distributed between that of mudstone and sandstone, and 
their attribute values overlap with sandstone or mudstone 
in a large range. The relationship between lithofacies and 
elastic attributes is established by the present method and 
LMKL-SVM method, respectively. Figure 4a exhibits the 
discriminated lithofacies using LDMKL-SVM. It can be 
noted that this method can better identify channel sand-
stone and floodplain mudstone, while the siltstone and 
sandy mudstone cannot be fully recognized. Figure 4b 
shows the discriminated lithofacies by LMKL-SVM. Some 

locations whose lithofacies are sandstone in model are 
identified as sandy mudstone. In addition, the lithofacies 
that should be siltstone and sandy mudstones at some loca-
tions are not consistent with the model facies. Although 
both the two methods closely follow the defined facies 
and show the promising results, the proposed method pro-
duces a more accurate result, which suggests that its ability 
to classify these facies is stronger than the conventional 
method. In order to compare and evaluate the performance 
of the two methods more intuitively and quantitatively, we 
count the confusion matrices of the two methods (shown 
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Fig. 3   Elastic attributes of the test model (a, b) and their probability density distribution (c, d). (a, c) P-wave velocity; (b, d) density. 0,1,2,3 rep-
resent mudstone, sandstone, sandy mudstone and siltstone, respectively. The difference of elastic properties between mudstone and sandstone is 
remarkable and easy to distinguish, while attribute values of sandy mudstone and siltstone overlap with those of mudstone and sandstone, which 
brings about challenges to discriminate them
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in Tables 1 and  2). It is found that the accuracy of the 
LMKL-SVM is slightly lower than that of the proposed 
method (about 2.03%). Obviously, the recognition accu-
racy of the proposed method for different lithofacies is 
also higher than that of LMKL-SVM. For the whole test 
model, the execution time of LMKL-SVM is 1674.81 s 
and is longer than that of the proposed method (354.99 s). 
This demonstrates the effectiveness and superiority of the 
lithofacies identification method based on LDMKL-SVM.    

4 � Application on field data

In order to further verify the validity of lithofacies discri-
minant method based on LDMKL-SVM, we applied this 
novel method to actual land logging and 2D seismic data. 
The filed data are from a China work area. Figure 5 dis-
plays the test seismic section that goes through two wells 
(Well A and B). According to the preliminary study and log 
interpretation results, the main lithofacies in the study area 
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Fig. 4   Classified results of the test model by different methods: a identified lithofacies by LDMKL-SVM; b identified lithofacies by LMKL-
SVM. By contrast, the former is superior to the latter. Mudstone and sandstone are well recognized. But the classification effect of the other two 
lithofacies is unsatisfactory

Table 1   Confusion matrix of the test model with the LDMKL-SVM method

Defined mudstone, % Defined sandstone, % Defined sandy mudstone, % Defined 
siltstone, %

Predicted mudstone 99.97 0.00 0.00 0.03
Predicted sandstone 0.00 99.91 0.09 0.00
Predicted sandy mudstone 0.00 74.46 25.54 0.00
Predicted siltstone 54.36 0.00 0.00 45.64

Table 2   Confusion matrix of the test model with the LMKL-SVM method

Defined mudstone, % Defined sandstone, % Defined sandy mudstone, % Defined 
siltstone, %

Predicted mudstone 99.97 0.00 0.00 0.03
Predicted sandstone 0.00 96.40 3.60 0.00
Predicted sandy mudstone 0.00 74.15 25.85 0.00
Predicted siltstone 60.05 0.00 0.00 39.95



Petroleum Science	

1 3

includes mudstone, water-bearing sandstone and oil-bearing 
sandstone. Black lines denote locations of the two wells, and 

the distance between the two wells is 975 m. Black arrows 
in Fig. 5 indicate the target reservoirs.

4.1 � Lithofacies discriminant in wells

Experiments are carried out in wells at first. We borrow 
density and P- and S-wave velocity as training attributes. 
Figures 6 and 7 exhibit logging curves of Wells A and B. 
Figure 8 displays the distribution of elastic attributes in the 
two wells. All logging data of Well A are used as training 
data to identify lithofacies of Well A and Well B by the 
present method and LMKL-SVM, respectively. Figures 9 
and 10 show interpretation lithofacies and identified results 
of Well A and Well B, respectively. The result produced by 
the present method has an excellent consistency with the 
interpretation lithofacies and can accurately pick out the 
oil-bearing sandstone. The performance of the proposed 
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Fig. 5   2D seismic stack profile. Black lines denote locations of the 
two wells. Black arrows indicate target reservoirs
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method is better than that of the traditional method. Statis-
tical analysis of the confusion matrix exhibited in Table 3 
and Table 4 indicates that the misjudgment rate of the pro-
posed method is only 4.87% (Well A) and 6.69% (Well B), 
while that of the traditional method is 7.89% and 14.68%, 
correspondingly. The accuracy of each type lithofacies is 
higher than that of LMKL-SVM. That is, the accuracy is 
improved by jointly considering the global low- and local 
high-dimensional features, indicating the dependability of 
the method quantitatively.      

4.2 � Seismic facies classification

Ultimately, we applied this novel method to the 2D seis-
mic profile. The characteristics of the geological structure 
vary with different measurement methods at different scales. 
Because the observation scales of logging data and seismic 
data are different, logging data are first coarsened to seismic 
scale by Backus averaging. The elastic attributes of the area 
to be predicted are obtained by the prestack seismic inver-
sion method, as shown in Fig. 11. With coarsened well data 
(well A and well B) as training data, classified lithofacies by 
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Fig. 7   Logging curves of the Well B: a porosity; b shale content; c water saturation; d P-wave velocity; e S-wave velocity; and f density
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different methods is displayed in Fig. 12. It can be noted that 
both the two methods can effectively identify sandstone and 
mudstone in the inter-well area and distinguish oil-bearing 
sandstone from water-bearing sandstone. In this application, 
we cannot compare the accuracy of the two methods because 
the true seismic facies is unknown. However, LDMKL-SVM 
can speed up prediction time over LMKL-SVM. Their run-
ning time is 107.5 s and 418.2 s, respectively. Predicted 
lithofacies of the traces near wells are almost in agreement 
with the coarsened well facies. The identified target reser-
voirs follow the actual situation, which also suggests the 
good performance and practical value of the new method. It 
can provide reliable information for reservoir prediction and 
subsequent research. In addition, this method can be applied 
to any case where lithology and fluid need to be recognized. 

5 � Conclusion

We describe a new lithofacies identification method 
based on SVM. The present method draws support from 
a composite nonlinear kernel consisted of high-dimen-
sional, sparse and computationally deep local features 
and low-dimensional global features. This method can be 
used to classify multiple types of lithofacies. One advan-
tage is that it can automatically learn the parameters of 
kernel functions and SVM at the same time, avoiding 
the weakness of the traditional lithofacies discriminant 
method based on SVM. Another potential advantage is 
that the new method can effectively improve the classi-
fication accuracy. At the same time, the computing cost 
is saved because the local high-dimensional features are 
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sparse and tree-structured. The numerical example and 
filed data application illustrate that the proposed method 
can generate a preferable identified result in a relatively 
short time. The comparison with traditional methods also 
calibrates the superiority of the lithofacies discriminant 
method based on LDMKL-SVM. Profiting from the high 

accuracy and computation efficiency, a valuable approach 
is provided for the practical application of seismic lithofa-
cies identification. It is also of great significance to the 
exploration and development of reservoirs and has good 
application prospects.
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of the test Well A: b classified by the proposed method; c classified 
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and oil sandstone, respectively. Because of the higher complexity of 
the field data than model data, learning of global and high-dimen-
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sandstone and oil sandstone, respectively. Comparing diagrams b 
with c, it can be found that the new method improves the accuracy 
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Table 3   Confusion matrix of Well A with different methods

Method Defined mudstone Defined water stone, 
%

Defined 
oil stone, 
%

Predicted lithofacies by LDMKL-SVM Mudstone 97.39% 2.51 0.10
Water stone 6.38% 92.20 1.42
Oil stone 0.00% 4.20 95.8

Predicted lithofacies by traditional LMKL-SVM Mudstone 90.12 5.98 3.90
Water stone 0.00% 92.91 5.67
Oil stone 0.00% 6.72 93.28

Table 4   Confusion matrix of Well B with different methods

Method Defined mudstone, % Defined water stone, % Defined 
oil stone, 
%

Predicted lithofacies by LDMKL-SVM Mudstone 91.90 7.16 0.94
Water stone 1.58 98.15 0.27
Oil stone 0.00 10.13 89.87

Predicted lithofacies by traditional LMKL-SVM Mudstone 81.64 9.27 9.09
Water stone 0.00 90.77 9.23
Oil stone 0.00 16.46 83.54
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