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ABSTRACT

Frequency-dependent amplitude versus offset (FAVO) inversion is a popular method to estimate the
frequency-dependent elastic parameters by using amplitude and frequency information of pre-stack
seismic data to guide fluid identification. Current frequency-dependent AVO inversion methods are
mainly based on elastic theory without the consideration of the viscoelasticity of oil/gas. A fluid
discrimination approach is proposed in this study by incorporating the viscoelasticity and relevant FAVO
inversion. Based on viscoelastic and rock physics theories, a frequency-dependent viscoelastic solid-
liquid decoupling fluid factor is initially constructed, and its sensitivity in fluid discrimination is
compared with other conventional fluid factors. Furthermore, a novel reflectivity equation is derived in
terms of the viscoelastic solid-liquid decoupling fluid factor. Due to the introduction of viscoelastic
theory, the proposed reflectivity is related to frequency, which is more widely applicable than the
traditional elastic reflectivity equation directly derived from the elastic reflectivity equation on fre-
quency. Finally, a pragmatic frequency-dependent inversion method is introduced to verify the feasibility
of the equation for frequency-dependent viscoelastic solid-liquid decoupling fluid factor prediction.
Synthetic and field data examples demonstrate the feasibility and stability of the proposed approach in
fluid discrimination.
© 2021 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This
is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/
4.0/).

1. Introduction

incorporate the reflection coefficient equation with frequency in-
formation and rock physics theory to make more use of amplitude

Fluid discrimination with seismic data helps to predict the dis-
tribution of the oil/gas reservoirs by analyzing the changes of
seismic wave velocity, amplitude, frequency and waveform etc. In
recent years, a variety of fluid anomaly identification methods
based on seismic data have been proposed. From the perspective of
seismic information, it can be divided into the method of fluid
identification using amplitude information, frequency information,
phase information or waveform information (Backus and Chen,
1975; Tatham, 1982; Mazzotti, 1991; Chen et al., 2008; Ren et al.,
2009; Ahmed, 2012; Zhu and McMechan, 2012; Yao and Wu,
2017; Yao et al., 2020); from the realization method, it can be
divided into attribute extraction and inversion (Ostrander, 1984;
Smith and Gidlow 1987, 2003, 2003; Connolly, 1999; Quakenbush
et al., 2006; Li et al, 2020). It is a current research trend to
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and frequency information.

Fluid factor is the characterization of reservoir fluid under the
guidance of rock physics theory. The construction of the fluid factor
is the key to reservoir fluid identification technology. The fluid
factor was initially proposed by Smith and Gidlow (1987). They
pointed out that the weighted superposition of P- and S-wave ve-
locity change rates could be used as the response of gas-bearing
reservoirs and defined as a fluid factor. Then, using different
model parameterization methods, more fluid factors in terms of
elastic parameters and P- and S-wave impedance were proposed.
For example, Goodway et al. (1997) illustrated that the product of
Lambda parameters and density could be used as a fluid factor to
identify the fluid anomalies. Gray (1999) and Gray et al. (1999)
estimated the Lambda parameters from the pre-stack seismic

1995-8226/© 2021 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).


http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:zhaoyunzong@yahoo.com
http://crossmark.crossref.org/dialog/?doi=10.1016/j.petsci.2020.10.001&domain=pdf
www.sciencedirect.com/science/journal/19958226
www.keaipublishing.com/en/journals/petroleum-science
https://doi.org/10.1016/j.petsci.2020.10.001
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.petsci.2020.10.001
https://doi.org/10.1016/j.petsci.2020.10.001

Z.-Y. Zong, Y.-W. Feng, X.-Y. Yin et al.

data by eliminating the effect of density. Hedlin (2000) defined the
pore modulus following the definition of Murphy et al. (1993),
which combined the seismic longitudinal and transverse imped-
ance information. Han and Batzle (2004) gave a simplified form of
Gassmann equation and stated that the bulk modulus Kf could be
estimated as a fluid factor. Quakenbush et al. (2006) used the in-
direct combination of the two impedances to define the Poisson
impedance by studying the intersection of longitudinal and trans-
verse wave impedances, and improved the accuracy of fluid iden-
tification. Russell et al. (2011) pointed out that the fluid term pf and
Gassmann fluid term f owned better sensitivity to fluid identifica-
tion, and can be estimated by seismic inversion. Zong et al. (2012)
combined the poroelastic theory to represent the fluid term as a
function of the P-wave and S-wave modulus, thereby no need for
density information from pre-stack seismic data. However, the fluid
factors mentioned above are basically traditional fluid factors those
are mainly estimated with amplitude information from the seismic
data without the consideration of the effect of frequency. And the
viscoelasticity of the medium is not well taken into consideration in
the definition of the frequency-dependent fluid factors.

Frequency-dependent AVO inversion is a popular method to
predict frequency-dependent parameters. Seismic reflectivity
equation lays a foundation for AVO inversion. Zoeppritz (1919)
established the Zoeppritz equation using plane waves, which
comprehensively explained the law of reflection and transmission
of incident waves as the beginning of reflectivity equation. How-
ever, due to the complexity of Zoeppritz equation, it is not easy to
apply directly to parameters inversion. Therefore, different
approximate reflectivities of Zoeppritz equation are applied in the
field of geophysical exploration (Muskat and Meres, 1940; Koefoed,
1955; Bortfeld, 1961; ; Shuey, 1985; Smith and Gidlow, 1987;
Hilterman, 1990Richards and Aki, 1980; Fatti et al., 1994; Goodway
et al., 1997; Wang, 1999; Weilian, 2007; Yin et al., 2013), empha-
sizing the influence of different parameter variations on the
reflection amplitude and its sensitivity. Nevertheless, current
approximate equations for frequency-dependent AVO inversion do
not take into account viscoelastic or velocity dispersion character-
istics in the medium (Wilson et al., 2009; ; Wu et al,, 2010a; Zhang
etal, 2011; Du et al., 2015; Li et al., 2016). Therefore, it is necessary
to combine the theory of petrophysics with the reflectivity equation
to establish a new frequency-dependent reflection coefficient
equation.

Elastic impedance inversion and AVO inversion are two
commonly used parameter estimation methods. The former uses
elastic impedance equation, the latter uses reflection coefficient
and its approximate equation. In terms of elastic impedance
inversion, Connolly (1999) proposed an elastic impedance inver-
sion method combining the characteristics of post-stack wave
impedance inversion and AVO inversion. Whitcombe (2002)
improved it by adopting a normalization method to solve the
problem that the numerical dimension varies with the angle. Yin
et al. (2010) proposed the elastic impedance equation containing
Gassmann's fluid term to directly invert for the high-precision fluid
term through elastic impedance inversion. As for AVO inversion,
many scholars have proposed different methods based on different
perspectives. For example, the Bayesian AVO inversion method
(Downton and Lines, 2001; Downton, 2005; Li et al. 2014, 2017),
pre-stack inversion method (Zhang et al. 2012, 2018; Liu and Wang,
2013), multi-frequency AVA inversion method for pre-stack gathers
(Zhang et al., 2014), frequency-dependent AVO inversion method
(Wilson et al., 2009; Wu et al., 2010b; Zhang et al., 2011; Chen et al.,
2012), and nonlinear AVO inversion (Pan et al., 2017; Cheng et al.,
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2018), and so forth. In order to well extract the frequency-
dependent viscoelastic solid-liquid decoupling fluid factors, we
chose the AVO inversion approach based on pre-stack seismic data.

In this study, a frequency-dependent viscoelastic solid-liquid
decoupling fluid factor is established. On this basis, the reflection
coefficient equation considering the influence of viscosity is
established. Finally, the fluid factor is estimated by frequency-
dependent AVO inversion. Through the synthetic and field data
examples, it is proved that the proposed fluid factor and its pre-
diction method are helpful to fluid identification.

2. Theory
2.1. Construction of viscoelastic solid-liquid decoupling fluid factor

Based on Biot-Gassmann theory, the solid-liquid coupling effect
of pore fluid and the solid-phase effect of rock skeleton are
analyzed through petrophysical statistical analysis. The relation-
ship between fluid factor and fluid modulus Ky (Han and Batzle,
2004) is

62
—K
P f

f (1)

where f is the fluid/pore term, § is the Biot coefficient, ¢ is the
effective porosity of the rock.

In order to consider the viscoelasticity of the medium, we use
the Futterman approximation constant Q model. And the P wave
complex velocity and the S wave complex velocity in the anelastic

medium are
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where « and ( are the P wave complex velocity and S wave complex
velocity, respectively. Vp and Vg are the P-wave phase velocity and
S-wave phase velocity corresponding to the reference frequency wr,
respectively. Qp and Qs are the quality factors of P-wave and S-
wave, respectively.

Defining fane = pa? — yﬁrypﬁz where p is density, and assuming
the ratio of P-wave and S-wave velocity yq4., is not affected by
attenuation, and Qg is much larger than Qp. Thus, the fluid factor of
anelastic medium can be expressed as
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And K, in the anelastic medium is
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where K, corresponds to the equivalent fluid bulk modulus in the
case of elasticity, and a new disturbance is added in the case of
viscoelasticity, namely AKj, .

Equation (5) is the frequency-dependent solid-liquid decou-
pling fluid factor we define from the viscoelasticity theory.

2.2. Frequency-dependent AVO reflection approximate equation for
viscoelastic solid-liquid decoupling fluid factor

Based on the theory of pore elasticity, using theoretical rock
physics model and empirical petrophysical model, the effects of
rock modulus, pore fluid and pore size on reservoir fluid are fully
considered, and the amplitude and frequency anomaly information
in seismic data are excavated to construct frequency-dependent
pore fluid sensitivity parameters for reservoir fluid identification.

The Aki-Richard approximation in viscoelastic media is

1 4sin2 0\ 4p sec?0 Ao 4sin2 0 468
w) =5 (1-257) 20, o=
2 P 2 o v, B

Ysat

3118(0

(6)

Multiplying both sides by a2p to transform the above equation
into

Ap-a?
2
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With equation (4),
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Substituting equation (9) into equation (7) yields,
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vsat 1S the ratio of P-wave velocity and S-wave velocity in dry
rock, ygry is the ratio of S-wave velocity and P-wave velocity in
fluid-saturated rock, Ky,  is a fluid modulus which is influenced by
the fluid content. § is the Biot coefficient, ¢ is the effective porosity

of the rock, p,, and B?¢-1 are built-up terms without specific
physical meaning, which lead to the simplification of the proposed
reflectivity equation, and they are addressed as the shear modulus
of the rock matrix and porosity divided by the square of Biot co-
efficient, respectively.

Considering the attenuation factor in the Futterman approxi-
mation constant Q model

7,2 _aZ_Vl% 1
sat — 2 T 2 2
g Vs w i
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Assuming that the P- and S- wave velocity ratio of the dry rock is
not affected by the attenuation, substituting equation (22) into
equation (19) yields

3 291 4K, 2
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2
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The viscoelastic P-wave reflection coefficient contains an
imaginary part. Due to its weak anelastic property, we observe that
the imaginary part is much smaller than the real part, and ignore it

Table 1
Parameters used by Futterman approximation constant Q model.
Ve, m/s Vs, m/s p, kg/m? Qe Q> Qs
Medium 6230 3170 2730 10 20 120
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|

to get the reflection coefficient (Chen et al., 2018).
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This equation is a solid-liquid decoupling fluid factor reflection
characteristic equation in the case of viscoelastic medium. Simplify
equation (24) to

4K 4(B%p"
R (6, w) = a(f, w) Kffa"e + b0, w) Ap"m+c(0) Eiz ] )
m (p7
+d@ 2P (25)
p
where
Ydry w sec? 4§
a(f,w) = 1——10g< )))
( 'Ysat mQp 4
Fsec? - gsin?0) (1-gtoe (1) )
sec20——=—sin20|(1-——log(—
< A/sat Y?at ) mQp Wr
sec2f 2 w )
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0= (- rgee())
sec2f
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(26)

Based on the viewpoint of dispersion proposed by Chapman et al.
(2002), it is assumed that the reflection coefficient changes with
frequency due to the difference in dispersion properties on both
sides of the interface of the subsurface medium. If the velocity
dispersion causes the P- and S-wave velocities to change with fre-
quency, then 4Ky /K; and Auy,/pmy also change with frequency. By
considering the dispersion effect, equation (9) can be expressed as a
function of incident angle and frequency, and the medium density
will not change with frequency, the following equation

2 1
ane AKfane Apg ( @ )

+ d(ﬂ)%
(27)

The frequency-dependent characteristic of the relative variation
of the fluid factor and the shear modulus changes approximately
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Fig. 1. Frequency-dependent characteristics of approximation constant Q model for elastic modulus (the red line is the elastic modulus at Qp = 10 and the blue line is the elastic

modulus at Qp = 20). (a). Vp; (b). Vs; (). K; (d). E; (e). 2 (). ; (g). o3 (h). K.

Normalized modulus

0.7 T T T T T
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Fig. 2. Comparative analysis of frequency-dependent gradient of frequency-dependent
elastic parameters in the approximation constant Q model.

Table 2
Parameters used for frequency-dependent P-wave reflection coefficient.
Vp, m/s Vs, m/s p, kg/m? Qv Qs wr, Hz
Medium 1 2800 1160 2100 10 © 20
Medium 2 2300 1500 1930 o © 20

linearly in the dispersion region. Therefore, A,gfa"e (w) and ‘Lﬁ (w) can

be expanded into Taylor series form under the reference frequency
wp, and the high-order term is ignored to obtain the first-order
approximation of the reflection coefficient,
(Al<fm>
Ky,

o (i)

RESE(6.0) = a(f. ) 0= (w0) + (0 — wp)a(f, ) o

ane

(0 wO) dw

(o) + ( — wo)b(0, w)

4(Be! 4
+c(h) # =
[ p
(28)
To simplify equation (28), the relative change in Ky and up

which is the value of the first derivative of the frequency at wg are,

A I<f ane A /u’ ZFm
e ),
Ke..o "

And the reflection coefficient at the reference frequency wy is,

d
dw

d

“dw (29)

IKfane

REE (0, wo) = a(f, wo) f*"&( o) + b(d, wo>—m<wo>

ane

4 (52"’71) 4p
o)~z >+ dO) (30)

Substituting equations (29) and (30) into equation (28), and
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defining 40 = w — wq, the original equation changes to,

REp¢ (0, w) = REp® (0, wo) + a(f, w)lg, Aw + b(f, w)ly, Aw (31)
Defining 4AR3}¢ (0, ) = R3¢ (0, w) — RARE (0, wo),

ARE (0, ) = a(f, w)l, Aw + b0, W), Aw (32)

where I, and I, are the frequency-dependent characteristics to

be inverted, and they can be used as fluid factors for fluid
identification.

2.3. Frequency-dependent AVO inversion method for viscoelastic
solid-liquid decoupling fluid factor

In the cases of two offsets (6; and 6, ), two sampling points, and
two frequencies (w; and w,), equation (32) in matrix form is,

() °

20
40

60

Frequency, Hz

80

100
30 40 50 0 10 20 30 40 50

Incident angle, degree Incident angle, degree

Fig. 4. Accuracy analysis of frequency-dependent reflection coefficient when Qp; = 10, Qs; = o0; Qpy = o0, Qsy = oo. (a). the exact Zoeppritz equation; (b). the Aki-Rhichards
approximation equation; (c). the approximate equation for solid-liquid decoupling fluid factor.

(C)] (b) °
20
N N
T T 4w
g o)
c =
[} @
= =
19} ] 60
w w

80

100

0 10 20 30 40 50

Incident angle, degree

(c)

Frequency, Hz

30 40 50 0 10 20 30 40 50

Incident angle, degree Incident angle, degree

Fig. 5. Accuracy analysis of frequency-dependent reflection coefficient when Qp; = 5, Qg = o0; Qpy = o0, Qsp = oo. (a). the exact Zoeppritz equation; (b). the Aki-Rhichards
approximation equation; (c). the approximate equation for solid-liquid decoupling fluid factor.
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Extending to case of m offsets, n samples and [ frequencies, and
the matrix is,

AR}
R AF'al AF'b]
2 AF'al AF'b}
4R}, AF'a, AF'b), |
iR | = |apa app? ||| (34)
'ARZ AF?a2, AF’b?,
m . .
;|Rl AFal,  AFb.,
m

where, AR}:i (i=1,2, - Lii=1,2,---m) represents the ii-th
offset, the data column vector of the total n sampling points cor-
responding to the frequency w;. AF (i=1, 2, -, I) is the oblique
diagonal matrix formed by the difference between the frequencies
w; and wg. a;ﬁi (i=1,2, - Lii=1, 2, ---m) is the ii-th offset, and
the oblique diagonal coefficient matrix corresponding to I, when
the frequency is w;. b;i (i=1,2, - Lii=1, 2, ---m) is the ii-th
offset, the oblique diagonal coefficient matrix corresponding to I,
when the frequency is w;. I, = and I, respectively represent the
frequency-dependent characteristics to be inverted.
Convoluting with seismic wavelets,

D;
W;AF'al  W;AF'b!}
Dl 1 1
- W,;AF'al  W;AF'b}
D, WiAF'a) WiAF'D) |
D? | = |W,AFa} W,AF°Db? [Iif} (35)
b% W,AFa2, W,AF?h2
1;’ W,AFd, W,AFb,
m
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AR’ (1.01) | T (0 — wo)a(fy.w1) O (01 — wo)b(fy, 1) O ]

AR? (61, 01) 0 (w1 —wo)a(fr,w1) O (w1 —wo)b(f1, 1) | | I}

AR (65, w1) (w1 — wo)a(f, w1) 0O (w1 — wo)b(f, 1) 0O e

AR*(6,w1) | _ | O (w1 —wp)a(f,w1) O (1 — 0)b(02,01) | | e (33)
AR (07, w5) (w2 —wp)a(fy,wz) O (w2 — wo)b(01,w2) O n

AR? (01, w5) 0 (w2 — wo)a(fy, ;) O (@2 — wo)b(f1,w3) | | b

ARY (6, ) (w2 — wo)a(f, wz) O (w2 — wo)b(f, w3) 0O L,

AR2(65, wry) L0 (w2 — wo)a(bz,wz) O (w2 — wo)b(0, w7) |

where Dﬁi (i=1,2, -, Lii=1,2, -, m)is the ii-th offset, the
frequency w; and the frequency wq corresponding to the column
vector of the amplitude information. W; (i=1, 2, ---, I) is the
wavelet matrix corresponding to the frequency w;, and the wavelet
matrices are different at different frequencies.

Defining D, m, and G as,

D= | p2 (36)

m — [Il(fm ] (37)

W;AF!a]
W;AF'al

W;AF'b]
W, AF'b)

W;AF'b},
W,AF?b? (38)

W;AF'a},
G = | W,AF?a?
W,AF?a, W,AF?b?,

WAFal, WAFb,,

Substituting equations (36)—(38) into equation (35) yields

D=Gm (39)

Under the Bayesian framework, the posterior probability dis-
tribution of the parameters ¢ to be inverted is
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)220 o)

where, f is the parameter to be inverted, x is the observed sample,
p(f|x) is the posterior probability density, p(f) is the prior proba-
bility density, and p(x|f) is the likelihood function.

The Bayesian estimation estimates m by pre-stack partial angle
superimposed gather data D with noise. Assuming that the likeli-
hood function obeys the Cauchy distribution as

1

1+m;2/oﬁj

where M is the number of model parameters, o2, is the variance of
the parameters to be inverted, and the posterior probability dis-
tribution of the parameters is,

b0,

(40)
[ p(x|6)do

M

fi

i=1

N

(oM

(41)

M

p(m',on|d) = T

i=1

1} exp [
1 +ﬁ§2/afn
) (D - E’m’)T(D - E’m’)]

202
Maximizing the posterior probability distribution (42) gives the
initial objective function as,

(42)

M
F(i') = (D - E/ﬁ’)T (D ~Gm') +203 ) ln(l +mp / a,zn)
i=1
(43)
Adding the initial model constraint yields,
_ T _
F(m)=(D-Gm) (D-Gm')+2053
M
x Zln(uﬁ?/aﬁ) +S (44)
i=1
where,
T
S = A (Mg, = Phi) (g, — P,
T
+ A, ("am - Plum> (‘Mm - Plﬂm) (45)

. . t
where, A, and 4, are constraint factors, P is [ dr, N, =
1ln

3n(,,, /i)y, =310k, /L, )-
Equation (44) has weak nonlinearity and can be optimized by an
iterative weighted least squares (IRLS) algorithm (Dai et al., 2018).

3. Synthetic examples

3.1. Sensitivity evaluation of frequency-dependent solid-liquid
decoupling fluid factor

Based on the Futterman approximation constant Q model, the
variation of elastic parameters with frequency in anelastic medium
is simulated, and the sensitivity of elastic parameters with fre-
quency is compared. The approximation constant Q model
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parameters are displayed in Table 1. The P-wave complex velocity
and the S-wave complex velocity in anelastic medium are obtained
with those parameters, and the elastic parameters are further
calculated according to the conversion relation between the elastic
parameters, and the variation characteristics of the elastic param-
eters with frequency are finally calculated.

In order to clarify the gradient of the elastic parameters with
frequency, Fig. 1 displays the frequency-dependent characteristics
of approximation constant Q model for the Lambda parameter 4,
shear modulus p, P-wave velocity Vp, S-wave velocity Vs, frequency-
dependent viscoelastic solid-liquid decoupling fluid factor K ,
volume modulus K, Young's modulus E, and Poisson's ratio o,
respectively. It can be seen from the figure that all elastic param-
eters change with frequency.

Fig. 2 shows the comparison of the frequency-dependent degree
of the normalized elastic parameters. It can be seen that the fre-
quency dispersion of the frequency-dependent solid-liquid
decoupling fluid factor in viscoelastic media is the largest among
many elastic parameters. Therefore, the frequency-dependent
solid-liquid decoupling fluid factor is used as a sensitive param-
eter for reservoir fluid identification, and helps to enhance the
reliability and stability of fluid identification.

3.2. Accuracy analysis of characteristic equations of seismic
frequency response of solid-liquid decoupling fluid factor

In order to study the influence of anelastic characteristics on the
reflection coefficient, the following parameters are used to
compare the difference between the reflection coefficient of
viscoelastic medium and that of elastic medium as in Table 2. As
shown in Fig. 3, the viscoelastic approximation reflection coeffi-
cient at the reference frequency w; = 20 Hz is compared with the
exact reflection coefficient equation. It can be seen that the
reflection characteristics of the solid-liquid decoupling fluid factor
in viscoelastic medium are approximately consistent with the Aki-
Rhichards approximation equation in the corresponding visco-
elastic medium.

Figs. 4 and 5 illustrate the viscoelastic approximation reflection
coefficients and the exact reflection coefficients varying with fre-
quency and incident angle. It can be seen that in viscoelastic media,
the exact Zoeppritz equation, the Aki-Rhichards approximation
equation, and the solid-liquid decoupling fluid factor approxima-
tion equation are basically consistent with the trends of angle and
frequency, verifying the accuracy of the solid-liquid decoupling
fluid factor approximation equation.

3.3. Synthetic and field data examples

In order to verify the feasibility of the frequency-dependent
solid-liquid decoupling fluid factor AVO inversion method, well
logging curves are used for synthetic examples. The original K,
and u,, of a well are displayed in blue in Fig. 6. The pre-stack
seismic data is obtained by using the convolution of the exact
reflection coefficient equation and the seismic wavelet (Ricker
wavelet). Then we use the inversion method proposed in this paper
to estimate parameters. In Fig. 6, the estimated K;, , and py, of the
well are displayed in red and the initial model is displayed in green,
respectively. From Fig. 6(a), the relative prediction errors of these
parameters are small. To further verify the stability of the inversion,
we add random Gaussian noise to the synthetic seismic trace with
the S/Nis 2:1, 5:1 and 10:1, respectively. It can be seen that we can
still get better inversion results with moderate noise.

Field data example in eastern China is utilized to verify the
feasibility and reliability of the inversion method. Fig. 7 shows the
pre-stack angled partial stacking seismic data profile extracted
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Fig. 6. Model parameter estimations K, . and ur, (red means inversion result, blue means original model, green means initial model). (a). without noise; (b). S/N = 10; (c). S/N = 5;

(d). SN = 2.

from the work area. fy = 25 Hz is selected as the optimal reference
frequency, and the multi-scale decomposition of seismic data is
realized by CWT. The estimated frequency-dependent solid-liquid
decoupling fluid factor profile is displayed in Fig. 8. The red block
indicates the position where the hydrocarbon reservoir exists. Ac-
cording to logging data and inversion results, the frequency-
dependent solid-liquid decoupling fluid factor shows lower
anomaly in the reservoir development site, and the frequency-
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dependent solid-liquid decoupling fluid factor maintains higher
consistency with logging results.

4. Discussion

The conventional frequency-dependent inversion method is
based on elastic medium and does not consider the seismic attenu-
ation caused by viscoelasticity. In order to simulate the propagation
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Fig. 7. Partial stacking seismic data profiles. (a). near angle stacking seismic data profile; (b). mid angle stacking seismic data profile; (c). far angle stacking seismic data profile.

process of seismic waves in underground media, a frequency-
dependent viscoelastic fluid sensitivity parameter is established
based on the viscoelasticity of the media. The proposed frequency-
dependent solid-liquid decoupling fluid factor by eliminating the
influence of the solid rock skeleton helps to reduce the multiplicity of
fluid detection to some extent, and eliminating the recognition illu-
sion appearing during fluid detection. However, it is established
incorporating the Gassmann equation and the Futterman approxi-
mation constant Q attenuation model. Further study relevant to
frequency dependent viscoelastic rock physic models beyond Gass-
mann may be more helpful in fluid factor establishment.
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By comparing with the conventional seismic reflection charac-
teristic equation and combining with the rock physics theory, the
frequency information of seismic data is deeply mined, and a new
frequency-dependent viscoelastic seismic reflection characteristic
equation is constructed, and its accuracy is verified. In order to
simplify the derivation of the reflection coefficient equation, Tay-
lor's first-order expansion is carried out for the convenience of
inversion. It is emphasized here that the reflection coefficient
characteristic equation of this paper can only carry out the first-
order Taylor expansion at the reference frequency.
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Fig. 8. Inversion result profiles. (a) frequency-dependent viscoelastic solid-liquid decoupling fluid factor profile; (b) Du,, profile.

5. Conclusions

A viscoelasticity and frequency-dependent amplitude variation
with offsets inversion is proposed to study the underground li-
thology and oil/gas distribution law. Considering the viscoelasticity
of the medium, a frequency-dependent solid-liquid decoupling
fluid factor is constructed and the reflection characteristic equation
is derived. And the frequency division of seismic data is carried out,
which provides the data basis for inversion method. Under the
framework of Bayesian theory, the maximum posterior probability
solution is solved, and the fluid factor is finally extracted. Synthetic
and field data examples demonstrate the potential of the proposed
approach in fluid discrimination.
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